
 

 

 
 

Key Considerations in Using Real-World 

Evidence to Support Drug Development  

 

(Draft for Public Review) 

 

 

 

 

 

 

 

Center for Drug Evaluation, NMPA 

May, 2019  



 

 

Table of Contents 

1. INTRODUCTION ......................................................................................................................... 1 

1. Background and Purpose .............................................................................................................. 1 

2. Progress in the development of related regulations or guidelines by domestic and 

foreign regulatory agencies .................................................................................................................. 3 

2. Relevant Definitions of Real-World Research ..................................................................... 4 

1. Real-World Data ............................................................................................................................ 5 

2. Real-World Evidence .................................................................................................................... 9 

3. Scenarios where real-world evidence supports drug development and 

regulatory decisions ............................................................................................................................... 9 

1. Treatment for rare diseases .......................................................................................................... 9 

2. Revision of indications or drug combination labeling ........................................................... 9 

3. Post-marketing evaluation .......................................................................................................... 11 

4. Clinical development of traditional Chinese medicine hospital preparations ................ 11 

5. Guiding clinical trial design ....................................................................................................... 13 

6. Identify the target population .................................................................................................... 13 

4. The Basics of Real-World Research Design ....................................................................... 14 

1. Pragmatic clinical trials .............................................................................................................. 14 

2. Single-arm trial using real world data as control .................................................................. 15 

3. Observational studies .................................................................................................................. 15 

5. Evaluation of Real-World Evidence ...................................................................................... 16 

1. Real world evidence and the scientific questions it supports ............................................. 16 

2. How to transform real-world data to real-world evidence .................................................. 17 

References .................................................................................................................................................. 18 

Appendix 1: Glossary ............................................................................................................................ 20 

Appendix 2: Common Statistical Methods for Real-World Research................................... 23 

Appendix 3: Chinese-English Vocabulary ...................................................................................... 40 



 

1 

 

Key Considerations in Using Real-World 1 

Evidence to Support Drug Development 2 

 3 

1. INTRODUCTION 4 

1. Background and Purpose 5 

Randomized Controlled Trials (RCTs) are considered the "gold 6 

standard" for evaluating drug efficacy and are widely used in clinical trials. 7 

With strictly controlled trial eligibility criteria and the utilization of 8 

randomization, RCTs minimize the impact of factors that potentially affect 9 

the causal inference, and hence result in more definitive conclusions and 10 

derive more reliable evidence. However, RCTs also have limitations: 11 

stringent entry criteria may reduce the representativeness of the trial 12 

population to the target population, the standard trial interventions used 13 

may not be completely consistent with real world clinical practice, the 14 

limited sample size and short follow-up time leads to insufficient 15 

evaluation of rare adverse events. These limitations bring challenges when 16 

extrapolating the RCT conclusions to real world clinical practice. In 17 

addition, for some rare and major life-threatening diseases that lack 18 

effective treatments, conventional RCTs may be difficult to implement, 19 

require substantial time costs, or raise ethical issues. Therefore, how to use 20 

real-world evidence (RWE) during drug R&D, especially as 21 

complementary evidence to RCTs in evaluating the efficacy and safety of 22 

drugs, has become a common and challenging question for global 23 

regulatory agencies, the pharmaceutical industry and academia.   24 

First, we need to clarify the definition and scope of real-world 25 

evidence on a conceptual level.  26 

Secondly, can and how will real-world data (RWD), as the 27 

fundamental basis of real-world evidence, provide sufficient support will 28 



 

2 

 

face many questions that need to be discussed, including data sources, data 29 

standards, data quality, data sharing mechanism, data infrastructure and so 30 

on.  31 

Third, the lack of regulatory guidance. At present, there are no mature 32 

and relevant regulations worldwide. Without sufficient experience, how to 33 

formulate guidelines that fit the reality of China's pharmaceutical industry 34 

requires active exploration and innovation.  35 

Fourth, the methodologies for evaluating real-world evidence needs 36 

to be streamlined. Real-world evidence stems from the correct and 37 

adequate analysis of real-world data. The analysis methods used are mainly 38 

for causal inference, which often requires more complex models and 39 

assumptions, screening of corresponding covariates, identification of 40 

confounding factors, definition of intermediate variables and instrumental 41 

variables, etc., All these will put forward higher requirements for statistical 42 

analysts as well as the urgent needs for regulatory guidelines.  43 

Fifth, the scope of real-world evidence application remains to be 44 

determined. The main role of real-world evidence is to complement, 45 

instead of substitute, the evidence provided by conventional clinical trials, 46 

and to form a complete and rigorous chain of evidence to further improve 47 

the efficiency and scientific validity of drug development. Therefore, it is 48 

necessary to clearly define the scope of application of real-world evidence 49 

according to the stage of drug development, and in the meanwhile adopt 50 

appropriate adjustment as the actual conditions evolve over time.  51 

In light of the above, this guideline aims to provide clarity on the 52 

definition of real-world research, outline the use and scope of real-world 53 

evidence in drug R&D, explore the basic principles for the evaluation of 54 

real-world evidence, and consequently provide scientific and practical 55 
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guidance for the industry to consider when utilizing real-world evidence to 56 

support drug development.   57 

2. Progress in the development of related regulations or guidelines by 58 

domestic and foreign regulatory agencies 59 

In February 2009, the American Recovery and Reinfection Act played 60 

a significant role in promoting Comparative Effectiveness Research (CER). 61 

Accordingly, the concept of real-world research (RWR, or real-world study 62 

RWS) was proposed given the context of the real world environment of 63 

CER.  64 

In December 2016, the United States passed the 21st Century Cures 65 

Act (the Act), encouraging the Food and Drug Administration (FDA) to 66 

accelerate the development of pharmaceutical products by conducting 67 

research in the use of real-world evidence. Under the support of the Act, 68 

during 2017-2018 the FDA issued a series of guidelines, namely "Use of 69 

Real World Evidence to Support Medical Device Regulatory Decisions", 70 

"Guidelines for the Use of Electronic Health Record Data in Clinical 71 

Research" and "Framework for Real World Evidence Solutions". 72 

In 2013, the European Medicines Agency (EMA) released the 73 

"Qualification opinion of a novel data driven model of disease progression 74 

and trial evaluation in mild and moderate Alzheimer’s disease", discussing 75 

the technical details in using real-world observational data to establish 76 

disease progression models. In 2014, EMA also launched the Adaptive 77 

Licensing Pilot to assess the feasibility of using observational study data to 78 

assist decision-making. Later in 2016, the “Scientific Guidance on Post-79 

authorisation Efficacy Studies” was released.  80 

At the International Council for Harmonisation of Technical 81 

Requirements for Medicinal Products for Human Use (ICH), Japan’s 82 

Pharmaceuticals and Medical Devices Agency (PMDA), proposed a 83 



 

4 

 

strategic approach for pharmacoepidemiology studies submitted to 84 

regulatory agencies to advance more effective utilization of real-world data.  85 

The systematic use of real-world evidence to support drug 86 

development and regulatory decision-making in China is still under 87 

development. However, the national drug regulatory agencies have already 88 

begun to utilize real-world evidence in the review practices. For example, 89 

the extended Bevacizumab treatment regimen in combination with 90 

platinum-based chemotherapies was approved in 2018, using real-world 91 

evidence from three retrospective studies. In another case, a drug was 92 

further evaluated, after marketing, through a prospective, observational 93 

real-world study to provide additional evidence on efficacy and safety.  94 

2. Relevant Definitions of Real-World Research 95 

Generally speaking, real-world research includes both research on 96 

natural populations and on clinical populations; the latter yields real-world 97 

evidence that can be used both to support medical product development 98 

and regulatory decisions, as well as for other scientific purposes. For that 99 

reason, this guidance focuses on real-world research that supports 100 

healthcare product development and regulatory decisions (see figure 101 

below).  102 

 103 

Figure 1 The path from RWD to RWE, which supports regulatory 104 

decisions for medical products 105 
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We define real-world research as: collecting patient-related data in a 106 

real-world environment (real-world data), and obtaining clinical evidence 107 

(real-world evidence) of the value and potential benefits or risks of the 108 

medical products through analysis. The primary research type is 109 

observational, but it can also be pragmatic clinical trials.  110 

1. Real-World Data 111 

（1） Definition 112 

Section 505F (b) of the Federal Food, Drug, and Cosmetics Act (FD&C 113 

Act) defines real-world data as "data regarding the usage, or the potential 114 

benefits or risks, of a drug derived from sources other than traditional 115 

clinical trials". In “Framework for FDA’s Real-World Evidence Program” 116 

and the “Use of Real World Evidence to Support Medical Device 117 

Regulatory Decisions.", the FDA defines real-world data as "data relating 118 

to patient health status and/or the delivery of health care routinely collected 119 

from a variety of sources”. For example, Electronic Health Record (EHR) 120 

data, Electronic Medical Record (EMR) data, medical insurance data, 121 

product and disease registry data, patient report data (including home 122 

environment), and other health tests (such as mobile devices) data.  123 

We define real world data as: data collected from patients’ 124 

medications and health status, and/or derived from various daily medical 125 

processes.  126 

（2） Source of real-world data 127 

Common sources of real-world data in China include: 128 

1) Health Information System (HIS): similar to EMR/HER, digital 129 

patient records including structured and unstructured data fields, such as 130 

patient demographics, clinical characteristics, diagnosis, treatment, 131 

laboratory tests, safety and clinical outcomes.  132 
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2) Medicare system: structured data such as basic patient information, 133 

medical service utilization, prescriptions, billing, medical claims, and 134 

planned health care.  135 

3) Disease Registry System: a database of patients with specific 136 

(usually chronic) diseases, often derived from a cohort registry of the 137 

disease population in the hospital.  138 

4) China ADR Sentinel Surveillance Alliance (CASSA): the use of 139 

electronic data from medical institutions to establish an active monitoring 140 

and evaluation system for the safety of drugs and medical devices.  141 

5) Natural population cohort database: the (to be) established natural 142 

population cohort and special disease cohort database.  143 

6) Omics-related databases: databases that collect information on the 144 

physiology, biology, health, behavior, and possible environmental 145 

interactions of patients, such as pharmacogenomics, metabolomics, and 146 

proteomics.  147 

7) Death registration database: a database formed by death registries 148 

jointly confirmed by hospitals, centers for disease control and prevention 149 

(CDC), and department of household registration.  150 

8) Mobile devices: mobile devices such as wearable devices that 151 

measure relevant data.  152 

9) Other special data sources: databases created for special purposes, 153 

such as national immunization program databases.  154 

（3） Data Quality Evaluation 155 

The quality of real-world data is mainly assessed by its relevance and 156 

reliability.  157 

1) Relevance: Important relevant factors to assess the suitability of 158 

real-world data for regulatory use include, but are not limited to: 159 
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① the inclusion of important variables and information related to 160 

clinical outcomes, such as drug use, patient demographic and clinical 161 

characteristics, covariates, outcome variables, follow-up duration, sample 162 

size, etc.; 163 

②whether the definition of clinical outcome is accurate and the 164 

corresponding clinical significance is meaningful; 165 

③Accurate and representative definition of target population; 166 

④ The  study hypothesis can be evaluated through the study 167 

protocol and statistical analysis plan.  168 

2) Reliability: The reliability of real-world data is mainly evaluated 169 

by data integrity, accuracy, quality assurance, and quality control.  170 

①Integrity: missing data problems are inevitable in the real-world 171 

setting, but the amount of missing should have a certain limit. For different 172 

studies, the degree of missing data may vary. When the proportion of 173 

missing data within a specific study exceeds a certain limit, there is a great 174 

deal of uncertainty about its impact on the study conclusion. At this time, 175 

it will be necessary to carefully assess whether the data can be used as real-176 

world data that produce real-world evidence.  177 

②Accuracy: the accuracy of the data is critically important and 178 

needs to be identified and verified against authoritative sources of 179 

reference. For example, the measurement of blood pressure requires the 180 

use of a calibrated sphygmomanometer, for which and the measurement 181 

process is subject to the operating specifications; whether the endpoint 182 

event is determined by an independent endpoint event committee, etc.  183 

③ Quality Assurance: quality assurance refers to the prevention, 184 

identification, and correction of data errors that occur during the course of 185 
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the research. Quality assurance is closely related to regulatory compliance 186 

and should run through every aspect of data management that needs to have 187 

a corresponding Standard Operating Procedures (SOPs).  188 

④ Quality Control: data collection, modification, transmission, 189 

storage, and archiving, as well as data processing, analysis, and submission, 190 

are all subject to quality control to ensure that the real-world data are 191 

accurate and reliable. It is necessary to develop a complete, normative and 192 

reliable data management process or protocol.  193 

（4） Data criteria 194 

Data standards, in the form that information technology systems or 195 

scientific tools can use, help ensure that the submitted data are predictable 196 

and consistent. In order to manage real-world data from multiple sources, 197 

it is necessary to convert the data into a common format with a generic 198 

formulation (e.g., terminology, vocabulary, coding scheme, etc.).  199 

In addition, whether the quality of real-world data can support drug 200 

development depend on key factors including  (but not limited to): 201 

whether there is a clear process and qualified personnel for data collection; 202 

whether a common defining framework, i.e., the data dictionary, is used; 203 

whether the common time frame for key data points collection is followed; 204 

whether a study plan, protocol and/or analysis plan related to the collection 205 

of real-world data have been established; whether the technical approach 206 

used for data element capture, including integration of data from various 207 

sources, data records of drug use, links to claims data etc., is adequate; 208 

whether patient recruitment minimizes the bias and reflects the true target 209 

population; whether data entry and transfer are useable and timely; and 210 

whether adequate and necessary patient protection measures such as 211 

patient privacy protection and regulatory compliance with informed 212 

consent are in place.  213 
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2. Real-World Evidence 214 

Real-world evidence is clinical evidence about the use and potential 215 

benefits or risks of medical products, obtained through the analysis of real-216 

world data. This definition is not limited in concept to obtaining evidence 217 

through retrospective observational studies, but also allows prospective 218 

access to a wider range of data to form evidence, through particular study 219 

designs including pragmatic clinical trials (PCTs).  220 

3. Scenarios where real-world evidence supports drug 221 

development and regulatory decisions 222 

Real world evidence may support drug development through a variety of 223 

ways, covering pre-marketing clinical development and post-marketing 224 

evaluation. Any use of real-world evidence for the purpose of product 225 

registration will require adequate communication in advance with 226 

regulatory authorities to ensure alignment on the study objectives and 227 

methodology.  228 

1. Treatment for rare diseases  229 

In addition to the challenges in subject recruitment, clinical trials for 230 

rare disease also face difficulties in the choice of control arm, given the 231 

few or lack of treatment options. Therefore, external controls established 232 

based on real world data in natural disease cohorts can be considered.  233 

External controls are primarily used for non-randomized single-arm 234 

trials, as a historical or in-parallel control. Historical external controls are 235 

based on real-world data obtained earlier; parallel external controls are 236 

based on data from disease registries constructed simultaneously with the 237 

single-arm trial. The use of external controls should take into account the 238 

impact of the heterogeneity and comparability of the target population on 239 

the corresponding real-world evidence.  240 

2. Revision of indications or drug combination labeling 241 



 

10 

 

For drugs that are already marketed, long-term clinical practice may 242 

find it necessary to expand the indication, and RCTs are often utilized to 243 

support the indication expansion. When an RCT is not feasible or when 244 

evidence it generates is not optimal, a PCT could be a reasonable choice. 245 

For example, clinical practice may find that a new drug for diabetes can 246 

potentially benefit patients with cardiovascular diseases (such as heart 247 

failure). In that case the subject recruitment into an RCT will be difficult 248 

with potential ethical issues and therefore the use of a PCT design may be 249 

more feasible.  250 

In terms of pediatrics medication, there are often cases of off-label 251 

usage in clinical practice. For that reason, the use of RWE in supporting 252 

the expansion of targeted population is also a viable strategy in drug 253 

development.  254 

A typical use of real-world evidence to support the development of 255 

Bevacizumab, a humanized monoclonal antibody of the vascular 256 

endothelial growth factor (VEGF). In 2015, Bevacizumab was approved in 257 

China in combination with chemotherapy (carboplatin and paclitaxel) for 258 

the first-line treatment of late stage unresectable advanced, metastatic or 259 

recurrent squamous non-small cell lung cancer. However, the real-world 260 

use of chemotherapy with Bevacizumab also includes Pemetrexed in 261 

combination with platinum, Gemcitabine and Cisplatin. In October 2018, 262 

Bevacizumab was approved to expand the treatment regimen with a 263 

combination of platinum-based chemotherapy, based on the strong 264 

supporting evidence from three real-world studies. These studies 265 

retrospectively analyzed patient data from three hospitals and showed that 266 

the combination of Bevacizumab with platinum-based chemotherapy 267 

significantly prolonged PFS and OS compared with chemotherapy alone, 268 

and no new safety issues were identified. This finding was consistent with 269 
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global population data. In addition, relevant real-world studies have also 270 

provided data in different patient subgroups such as those with EGFR 271 

mutations or brain metastases, confirming the efficacy and safety of 272 

Bevacizumab combination therapy from multiple perspectives.  273 

3. Post-marketing evaluation 274 

Due to factors such as limited sample size, short study duration, strict 275 

enrollment criteria, and standardization of intervention, drugs approved 276 

based on RCTs usually have limited safety information, lack of 277 

generalization of efficacy conclusions, less optimal drug regimen, and 278 

insufficient health economic benefits. As a result, there is a need to use 279 

real-world data for more comprehensive assessment of these aspects of the 280 

approved drugs, and to refine the decision making based on the real-world 281 

evidence from natural populations on a continuous basis.  282 

For example, a drug for cardiovascular diseases has been approved in 283 

more than 50 countries/regions worldwide. In the multi-regional clinical 284 

trials that supported it approval, small number of Chinese subjects resulted 285 

in limited number of cardiovascular events and short drug exposure in the 286 

Chinese subgroup. This has led to greater variability in the efficacy results 287 

in the Chinese population. As an overseas marketed drug with clinically 288 

urgent needs in China, to further evaluate the efficacy of this compound in 289 

Chinese patients, the applicant plans to conduct a prospective, 290 

observational, post-marketing real-world study to evaluate the 291 

combination of the compound with standard treatment versus standard 292 

treatment alone, in the prevention of major adverse cardiovascular events 293 

(MACE) in Chinese patients with cardiovascular disease.  294 

4. Clinical development of traditional Chinese medicine hospital 295 

preparations  296 

Traditional Chinese medicine prepared and used in hospitals have 297 

been widely used clinically for a long time without being approved for 298 

marketing. This is a unique phenomenon in China. For the clinical research 299 
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and development of such drugs, if real-world research and randomized 300 

controlled clinical trials can be combined, scientific and feasible clinical 301 

R&D and regulatory decision-making pathways can be further explored.  302 

For the development of traditional Chinese medicine hospital 303 

preparation, there exist multiple R&D strategies that utilize real-world 304 

evidence. Figures 2 and 3 outline two potentially possible pathways. The 305 

pathway that combines observational studies and RCTs is illustrated in 306 

Figure 2. Specifically, stage 1 starts with retrospective observational 307 

studies. At this stage effort should be made to collect as much as possible 308 

existing real-world data related to the use of the product including all 309 

possible covariates, develop data cleaning rules, identify possible controls, 310 

assess data quality, and conduct comprehensive and detailed analyses using 311 

appropriate statistical methods. If the retrospective observational studies 312 

show that the drug has potential benefits for patients in clinical use, it may 313 

proceed to the next stage of the development, otherwise the process should 314 

be terminated. In stage 2, prospective observational studies can be 315 

conducted. Based on the stage 1 research, this second stage can be more 316 

carefully designed in terms of several aspects, including data acquisition 317 

and its system, data quality control, data cleaning rules, and clearer 318 

definition of controls. Once this stage 2 prospective observational research 319 

has progressed to certain phase, and if the data are consistent with the 320 

results of stage 1 retrospective observational studies by continuing to show 321 

clinically meaningful benefits, a third stage of RCT can be conducted in 322 

parallel. If needed, a pilot RCT may be conducted first to acquire sufficient 323 

information to support the design of the primary RCT. However, if existing 324 

evidence from previous observational studies is deemed sufficient, a 325 

confirmatory RCT may be designed and conducted directly. In terms of 326 

timing, the duration of the RCT may be covered by the stage 2 prospective 327 

observational studies, which can be completed at the same time as the RCT 328 

or extended for some time after the end of the RCT, depending on the 329 

maturity of the real-world evidence.  330 

 331 
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Figure 2 Potential development pathway for traditional Chinese medicine 332 

hospital preparations  333 

Another potentially possible pathway, which combines observational 334 

studies with PCTs, is outlined in Figure 3. In the first stage, retrospective 335 

observational studies are conducted first. If it is concluded that the drug 336 

has potential benefits in clinical practice, it may proceed to the second stage, 337 

otherwise the process should be terminated. The second offstage consists 338 

of a PCT research, which provides evidence that can be used to support the 339 

evaluation of the drug’s clinical efficacy and safety.  340 

 341 
Figure 3 Potential development pathway for traditional Chinese medicine 342 

hospital preparations 343 

5. Guiding clinical trial design 344 

Compared with other potential applications, using real-world 345 

evidence to guide clinical trial design has more practical utilization. For 346 

example, the two potential pathways for the development of hospital-347 

prepared traditional Chinese medicines described in the previous section 348 

have used the real-world evidence generated by retrospective observational 349 

studies, including for example the disease natural history, the disease 350 

prevalence in the target population, the effectiveness of standardized 351 

treatments, and the distribution and variation of key related covariates, to 352 

provide a basis for the next stage study design. More generally, real-world 353 

evidence can provide valid reference for inclusion and exclusion criteria, 354 

parameters for sample size estimation, and determination of non-inferiority 355 

margins, etc.  356 

6. Identify the target population 357 

Precision medicine aims to better predict the therapeutic benefits and 358 

risks of drugs to specific populations (subgroups), and real-world evidence 359 

based on real-world data provides the possibility for the development of 360 

precision medicine. For example, due to the limited sample size, regular 361 

clinical trials often ignore or have limited power to consider subgroup 362 

effects in the research plan. This prevents important information on 363 

potential treatment responders or high-risk populations with serious side 364 
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effects from being fully recognized. Through a thorough analysis of real-365 

world data, the treatment benefits and risks in different subgroups can be 366 

more adequately assessed, and hence real-world evidence can be obtained 367 

to support more precise identification of the target population.  368 

The identification of biomarker is critical for preclinical and early 369 

clinical studies of targeted therapies. Using real-world information such as 370 

omics data, public gene bank information, and related clinical data in 371 

population cohorts, real-world evidence can be generated through various 372 

contemporary data mining techniques such as machine learning, which can 373 

in consequence support the precise identification of population for targeted 374 

therapies.  375 

4. The Basics of Real-World Research Design 376 

1. Pragmatic clinical trials 377 

Pragmatic Clinical Trials (PCT), also known as practical clinical trials, 378 

refer to clinical trials that are designed and conducted in an environment 379 

close to the real-world clinical practice. They represent a type of study 380 

between RCTs and observational studies. Unlike RCTs, PCT interventions 381 

can be either standardized or non-standardized; subjects in the PCTs can 382 

be randomized or allocated per pre-defined criteria; the inclusion criteria 383 

for the subjects are often less restrict and considered more representative 384 

of the target population, and the evaluation of intervention outcomes may 385 

not be limited to clinical efficacy and safety. On the other hand, unlike 386 

observational studies, PCTs are intervention studies, although the 387 

interventions are often designed with additional flexibility.  388 

Since a PCT needs to consider the impact of all potential factors, 389 

including especially various biases and confounding factors, its study 390 

design and statistical analysis are usually complicated, and the required 391 

sample size can be much larger than a regular RCT design. PCTs, when 392 

randomization is utilized, will reduce the impact and biases of the 393 

confounders and thus provide a generally speaking robust causal inference. 394 

In addition, PCTs do not adopt blinding in most cases, therefore sufficient 395 



 

15 

 

attention should be paid in estimating and adjusting the resulting detection 396 

bias. Since PCTs are conducted in a setting close to real clinical practice, 397 

the evidence obtained by PCTs is considered as the most reasonable and 398 

practice real-world evidence compared to other research types.  399 

2. Single-arm trial using real world data as control 400 

The use of external controls has limitations, mainly including 401 

different medical environments, changes in medical technology over time, 402 

different diagnostic criteria, different outcome measures, different baseline 403 

condition of patients, diverse interventions, data quality, etc. These 404 

limitations result in additional challenges in the comparability of research 405 

subjects, the accuracy of research results, the reliability and extrapolation 406 

of research conclusions.  407 

To address these limitations, it is first necessary to ensure that the 408 

collected data meet the relevant quality requirements of real-world data. 409 

Secondly, in terms of design, the use of parallel external controls is 410 

generally superior to historical controls. Prospective parallel external 411 

controls can use disease registration models to ensure that data records are 412 

as complete and accurate as possible. Third, appropriate methods shall be 413 

adopted for statistical analysis, such as the Propensity Scores (PS) method 414 

and Virtual Matched Control method.  415 

3. Observational studies 416 

The data collected from observational studies are undoubtedly the 417 

closest to the real world, but their most notable limitations are the existence 418 

of various biases, data quality is difficult to guarantee, and observational 419 

and unobserved confounding factors are difficult to identify. These 420 

challenges leave the study conclusion with large uncertainty.  421 

Whether the data collected from observational studies are appropriate 422 

to generate real-world evidence to support regulatory decisions depend on 423 
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a few areas of focus: ①What are the data characteristics? (e.g., collection 424 

of relevant endpoints, consistency of records, description of missing data, 425 

etc.) ②What are the characteristics of the research design and analysis? 426 

(e.g., is there an appropriate positive control? Is the non-inferiority design 427 

applicable considering potential untested confounders as well as potential 428 

measurement variability?) ③ What sensitivity analyses and statistical 429 

diagnostic methods are pre-determined to analyze real-world data?  430 

The key technique for analyzing real-world data from observational 431 

studies is causal inference. The statistical analysis methods commonly used 432 

in real-world studies are summarized in Appendix 2.  433 

5. Evaluation of Real-World Evidence 434 

The evaluation of real-world evidence should follow two main 435 

principles: whether the real-world evidence can support the scientific 436 

questions that need to be answered; and whether the existing real-world 437 

data can be scientifically analyzed to obtain the required real-world 438 

evidence.  439 

1. Real world evidence and the scientific questions it supports 440 

Prior to the decision to use any evidence including real world 441 

evidence, the scientific questions under evaluation should first be clearly 442 

defined. For example, the safety considerations for the use of drugs in 443 

combination with other drugs after marketing; the expanded indications 444 

for approved products; and the establishment of robust and reliable 445 

historical controls for a single arm clinical trial. The original intention of 446 

using real-world evidence should be considered: is it because the 447 

corresponding scientific question is facing real world, or it is because 448 

traditional clinical trials cannot be effectively implemented. If the latter, 449 

whether or not the real-world evidence can replace traditional clinical 450 

trials, answer the same questions and arrive at robust conclusions, should 451 
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be used as important guidelines for measuring real-world evidence 452 

applications.  453 

2. How to transform real-world data to real-world evidence  454 

To answer this question, a few key factors need to be considered:①455 

The research environment and data acquisition need to be close to the real 456 

world, such as a more representative target population, diversity of 457 

interventions compatible with clinical practice, or natural selection of 458 

interventions; ②Use of appropriate controls; ③More comprehensive 459 

evaluation of drug effectiveness; ④Effective bias control, such as the use 460 

of randomization, harmonization of measurement and evaluation 461 

methods, etc.; ⑤Appropriate statistical analyses, such as the correct use 462 

of causal inference methods, reasonable handling of missing data, 463 

adequate and sufficient sensitivity analyses, etc.; ⑥Reasonable 464 

interpretation of results; ⑦Consensus among the key stakeholders.  465 

Finally, it should be emphasized again that all study designs, 466 

assumptions, and specific definitions and methodologies relevant to the 467 

generation of real-world evidence should be clearly defined in advance in 468 

the study protocol. In the meanwhile, any use of real-world data and 469 

evidence with the ultimate expectation of drug registration would require 470 

sufficient communication with regulatory authorities in advance, in order 471 

to ensure mutual agreement on study objectives and methods. Post-hoc 472 

remedial data citation, definition, analysis, and interpretation are generally 473 

not acceptable for regulatory decisions.  474 

  475 
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Appendix 1: Glossary 546 

Patient Registry: A system of collecting standard clinical and other data, 547 

using an observational research approach, to evaluate specific disease, 548 

condition, or specific outcome in the exposed population, for one or more 549 

predefined scientific, clinical, or policy objectives.  550 

Single-arm (One-arm) Clinical Trial: A non-randomized clinical trial 551 

where only the experimental group is set up. A single-arm trial, usually 552 

uses external controls based on historical data or in a parallel manner.  553 

Observational Study: A study that explores the outcomes in natural or 554 

clinical populations without active intervention, based on specific 555 

research objectives.  556 

Clinical Trial: An interventional clinical research in which one or more 557 

interventions, possibly including placebo or other controls, are 558 

prospectively assigned to human subjects to assess the impact of these 559 

interventions on health-related biomedical or behavioral outcomes.  560 

Retrospective Observational Study: An observational study based on 561 

historical data (generated before the start of the study).  562 

Prospective Observational Study:  An observational study based on 563 

data to be collected prospectively based on a preset research plan.  564 

Comparative Effectiveness Research: A research method, by 565 

considering both individuals and the population in an environment as close 566 

as possible to the real world, that evaluates the clinical effectiveness and 567 

safety, social effects, and economic benefits of a particular intervention. 568 

Such evaluation helps key stakeholders such as patients, doctors, policy 569 

makers, and service consumers to improve healthcare services so that the 570 

most appropriate interventions or strategies can achieve the optimal 571 

outcomes in the most appropriate target population and timing.  572 

The comparative effectiveness research is based on the real world, with a 573 

wide range of applications focusing on the decision-making for the natural 574 

population. Therefore, it is necessary to consider the impact of many 575 

factors on the outcome as comprehensively as possible. The designs are 576 

often more complex with usually a large sample size. In the meanwhile, 577 

there are clear requirements for valid statistical analysis in terms of causal 578 

inference.  579 

Pragmatic Clinical Trial (PCT, a.k.a. Practical Clinical Trial): A 580 

clinical trial that is designed and conducted in an environment as close as 581 

possible to the clinical real world. It is a type of research between RCTs 582 

and observational studies. Unlike RCTs, PCT interventions can be either 583 

standardized or non-standardized; subjects in the PCTs can be randomized 584 

or allocated per pre-defined criteria; the inclusion criteria for the subjects 585 
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are often less restrict and considered more representative of the target 586 

population, and the evaluation of intervention outcomes may not be limited 587 

to clinical efficacy and safety. On the other hand, unlike observational 588 

studies, PCTs are intervention studies, although the interventions are often 589 

designed with additional flexibility 590 

Data Standard：A set of rules on how to construct, define, format, or 591 

exchange specific types of data between computer systems. Data standards 592 

allow the submission of information to be predictable and consistent, and 593 

in forms that information technology systems or scientific tools can use.  594 

Randomized Controlled Trial (RCT): A clinical trial that utilizes a 595 

randomization method in subject assignment to experimental and 596 

appropriate control groups.  597 

External Control: The control in clinical trials established based on data 598 

outside the scope of the study, such as real-world data, to evaluate the 599 

effects of the interventions under investigation. External controls can be 600 

historical data or data obtained during the same period of time in a parallel 601 

manner.  602 

Medical Claims Data: A compilation of information on medical claims 603 

submitted to insurance companies for access to claims for treatments and 604 

other interventions.  605 

Causal Inference: An inferential action, often based on real-world data, 606 

that characterizes the causal relationship between interventions or 607 

exposures to clinical or health outcomes, taking into account the effects of 608 

various covariates and measured or unmeasured confounders and 609 

controlling possible biases. Appropriate statistical models and analytical 610 

methods should be used to establish the conclusions and causal relationship.  611 

Real World Data (RWD): Data collected for a patient’s health status 612 

and/or derived from various routine medical processes that can be analyzed 613 

to potentially form real-world evidence.  614 

Real World Research/Study (RWR/RWS): As part of the CER, an 615 

RWR/RWS refers to the collection of patient-related data in a real-world 616 

environment to, through analysis, acquire clinical evidence (real-world 617 

evidence) of the value and potential benefits or risks of medical products. 618 

The main research type is observational, but it can also be pragmatic 619 

clinical trials.  620 

Real-World Evidence (RWE): Clinical evidence on the use and potential 621 
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benefits or risks of medical products obtained through the analysis of real-622 

world data.  623 

  624 
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Appendix 2: Common Statistical Methods for Real-World Research 625 

As compared with RCTs, causal inference in real-world studies 626 

requires special attention to adjustment for confounding effects. Therefore, 627 

there is often a need for relatively complex statistical models and analytical 628 

methods. These methods include both classical statistical methods, such as 629 

conventional multivariate regression, and also some relatively more 630 

cutting-edge and sophisticated ones, such as propensity score matching and 631 

instrumental variables. This guidance only provides a general description 632 

of these statistical methods. More specific methods and application details 633 

can be found in the references provided and do not preclude the appropriate 634 

use of methods that are not described here.  635 

1. Descriptive and Unadjusted Analyses 636 

For descriptive analysis, appropriate descriptive statistics and 637 

statistical plots can be selected according to different data types, including: 638 

the range for continuous/numerical variables, dispersion and central 639 

tendency, counts and percentages for categorical variables, and graphs that 640 

describe the distribution of data. For real-world research, correct and 641 

effective descriptive statistical analyses can play an important role. For 642 

example, in disease registry cohort studies, stratified descriptive statistics 643 

of relevant covariates by levels of exposure factors can help to examine 644 

their distribution balance; in propensity score matched datasets, summary 645 

statistics by group of relevant covariates by exposure factors can help to 646 

identify imbalances in residuals after the matching, etc.  647 

Univariate or unadjusted hypothesis testing, such as two-sample t test, 648 

can be used to assist in the identification of covariates related to exposure 649 

factors and/or study outcomes. For real-world studies, where possible 650 

confounding effects often need to be identified and considered from within 651 

a large number of covariates, extensive and comprehensive exploratory 652 
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analyses of relevant subject characteristics using descriptive statistics are 653 

generally necessary.  654 

2. Adjusted Analyses 655 

（1） Selection of Covariates 656 

- When using causal inference methods that adjust for covariates, the 657 

selection of covariates selection is often a frontend question. Generally, 658 

methods for covariate selection belong to one of the two categories. One 659 

is, based on a causal network based on the exposure-to-outcome 660 

relationship, to identify risk factors, confounders, intermediate variables, 661 

time-varying confounders, collider variables, and instrumental variables. 662 

Risk factors and confounders should be included as covariates in the model, 663 

while the inclusion of intermediate variables, collider variables, and 664 

instrumental variables should be avoided: 665 

- Risk Factor: Baseline covariates that are predictive of the outcome 666 

variable but have no effect on the level of the treatment/exposure factor. In 667 

the causal relationship as shown in Figure 1, where R denotes the risk factor,668 

A   indicates treatment or exposure factors, Y  denotes the outcome 669 

variable. Any adjustment to R  does not affect the estimation of the effect 670 

from A Y , i.e., such adjustment does not introduce or reduce bias, but 671 

instead can improve the estimation precision and model efficiency.  672 

 673 

 674 

Figure 1. Causal relationship between risk factors ( R ) and outcome variables (Y )  675 

 676 

- Confounder: Factors that affect both the level of 677 

treatment/exposure factors and are predictive for outcome variables. 678 

Certain confounders are measured, but there are also those that have not 679 

been measured. In the causal relationship as shown in Figure 2, where A680 

R 

A Y 
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indicates treatment or exposure factors,Y denotes the outcome variable, 1U681 

and 2U   are two unmeasured confounders, C  represents a measured 682 

confounder. In such case, (C can be a proxy variable for 1U  such that an 683 

adjustment on C   can eliminate the confounding impact of 1U  on the 684 

outcome Y .  685 

 686 

 687 

 688 

Figure 2. Causal relationship between measured confounding variables ( C ), and 689 

unmeasured confounding variables ( 1U , 2U )  690 

- Intermediate Variable:  Variables that may or may not be on the 691 

treatment-outcome causal pathway after treatment or exposure. As shown 692 

in Figures 3a and 3b, respectively, where A indicates treatment or exposure 693 

factors,Y  represents the outcome variable at the moment of measurement,694 

M  denotes the intermediate variable, U  indicates an unmeasured 695 

confounder between M  and Y  .  To estimate the total effect of A Y  , in 696 

case of Figure 3a, Fig. A Y The total effects are divided into direct effects 697 

and indirect effects. an adjustment on M  may eliminate the indirect effect, 698 

resulting in a biased estimation of the total effect; and in case of Figure 3b, 699 

an adjustment on M  A will introduce correlation between A   and U  , 700 

which are originally independent, and consequently U  into a confounding 701 

factor in the causal relationship from A Y  , and result in a biased 702 

estimation of the total effect if no appropriate adjustment to U  is made. 703 

Also, especially in real-world studies, bias can be introduced due to over-704 

adjustment if the covariates being adjusted for are not those measured at 705 

baseline.  706 

 707 

A 

U2 

Y 

U1 

C 

M Y A 
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 708 

Figure 3a. Causal relationship between treatment ( A ) and outcomes (Y ), with an 709 

intermediate variable ( M ) 710 

 711 

 712 

 713 

 714 

 715 

 716 

Figure 3b. Causal relationship between treatment ( A ) and outcomes (Y ), with an 717 

intermediate variable ( M ) and an unmeasured confounder (U )  718 

 719 

- Collider Variable: In a causal relationship, if a variable has two 720 

independent parental nodes, then such variable is considered a collider. An 721 

adjustment to the collider may introduce correlation between the parental 722 

nodes, which are originally independent, and may bring additional 723 

confounding effect between the exposure and outcome, leading to a biased 724 

estimation of causal relationship. In a causal relationship as shown in 725 

Figure 4, where
1U denotes an unmeasured confounder between variable L 726 

and outcome Y,
2U  denotes an unmeasured confounder between variable L 727 

and exposure factor A. In such case the variable L becomes a collider, with 728 

1U and
2U  being two independent parental nodes. An adjustment to L will 729 

introduce correlation between 
1U and

2U , which are originally independent, 730 

and may bring additional confounding effect between the exposure and 731 

outcome, leading to a biased estimation of the causal relationship between 732 

M Y A 

U 
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A Y . It might be noted that the intermediate variable M in Figure 3b is 733 

also a collider variable.  734 

 735 

 736 

 737 

 738 

 739 

 740 

Figure 4.Causal relationship between treatment ( A ) and outcomes (Y ), with a collider 741 

variable ( L )  742 

 743 

- Instrumental Variable: A pre-treatment variable that has a causal 744 

effect on the level of a treatment or exposure factor, but has no causal 745 

association with the outcome variable other than indirectly affecting the 746 

outcome variable through the effect of the exposure factor. The 747 

instrumental variable is independent of confounders of exposure and 748 

outcome. In a causal relationship as shown in Figure 5, where  749 

indicates the confounding factors between exposure factors,  and 750 

outcome . In this case, is an instrumental variable. If the instrumental 751 

variables are adjusted in a statistical analysis by being directly 752 

incorporated into the model, the confounding impact of might be 753 

enlarged. On the other hand, certain analysis methods for 754 

instrumental variables may be used to eliminate confounding effects 755 

(see Estimation of instrumental variables).  756 

 757 

U

A
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 758 

 759 

 760 

 761 

 762 

Figure 5.Causal relationship between treatment ( A ) and outcomes (Y ), with an 763 

instrumental variable ( Z ) 764 

 765 

In reality, the true complete network structure is unknown. During 766 

practical applications, when part of the causal structure is known, existing 767 

covariate selection methods can be used, based on relevant professional 768 

background knowledge, to adjust all observed baseline variables that may 769 

be associated with the outcome, known outcome-related risk factors, and 770 

all direct dependent variables for treatment or outcome. Another type of 771 

covariate selection method is based on high-dimensional variable selection. 772 

The principle is to use the degree of association between response variables 773 

to empirically learn the correlation between variables from the data, and 774 

select the variables related to the treatment factors and/or outcome 775 

variables. Typical methods include forward selection, backward selection, 776 

machine learning (such as Boosting, random forest, LASSO method, etc.) 777 

and methods for automatic high-dimensional proxy adjustment. These two 778 

types of methods can also be used in combination, i.e., first use 779 

professional experience to identify a set of variables, and then use 780 

appropriate empirical learning methods to further select the covariates to 781 

be included in the final analysis model. This has the advantage of limiting 782 

reliance on empirical learning, reducing the risk of over-adjustment while 783 

also reducing confounding effect.  784 

（2） Conventional Multivariate Regression 785 

Z A Y 

U 
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Regression analysis is a common strategy for adjusting the influence 786 

of potential confounding variables and estimating treatment effects. 787 

Generally, the variables to be adjusted are variables that are simultaneously 788 

related to the study's treatment factors and outcome measures, and are 789 

located before the treatment factors on the causal pathway. If an 790 

intermediate variable is located on the treatment-to-outcome pathway, an 791 

adjustment to it may eliminate some of the treatment effects, resulting in a 792 

bias due to over-adjustment. There are extensive applications in 793 

observational studies where traditional multivariate regression methods are 794 

used to directly adjust for potential confounding and effect modifying 795 

factors. These methods are also applicable in real-world studies. The use 796 

of regression analysis methods requires attention to whether the 797 

corresponding model assumptions are valid. For example, the linear 798 

regression model assumes that the mean of the outcome variable is a linear 799 

function with respect to the covariates. Therefore, this assumption needs to 800 

be verified before choosing a linear regression approach. In addition, 801 

whether to choose a regression model or other methods also depends on 802 

the characteristics of the data. For example, if the number of events in a 803 

study is sufficiently large (e.g., 8-fold or more than 10-fold the number of 804 

covariates) relative to the number of covariates included in the model and 805 

the treatment factor is not uncommon, the traditional logistic regression 806 

approach is a reasonable option and may be considered as the primary 807 

analysis method. Otherwise, alternative methods that are more appropriate 808 

should be considered. In addition, all regression analysis methods have 809 

potentially the risk in extrapolation, that is, the support of the fitted model 810 

is actually outside the range of the sample data. To assess the risk of 811 

extrapolation, statistical methods such as propensity scores can be used.  812 
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In the situation where the number of covariates is large, methods like 813 

the stepwise approach may help in establishing a more efficient model. 814 

However, it should always be noted that there may be certain level of 815 

subjectivity, depending on the actual variable selection method and criteria 816 

(e.g., p-value ≤ 0.1 for the corresponding parameter of interest). Also, for 817 

covariates with a meaningful but relatively modest effect on disease risk, 818 

the final model identified using independent variable selection methods 819 

may miss these important covariates. Furthermore, the use of a stepwise 820 

regression approach may lead to an underestimation of the standard error 821 

in the estimation of the model parameters. Another strategy is to use 822 

composite covariates such as Propensity Score (PS) or Disease Risk Score 823 

(DRS) in the regression. In cases where the outcome event is relatively rare 824 

(eg, less than 8-fold of the number of covariates), the propensity score 825 

method is often superior to the traditional logistic regression method; 826 

however, in cases of rare treatment/exposure (ie, only a small number of 827 

subjects in a particular treatment group) but the number of outcome events 828 

is large, the traditional logistic regression method is generally superior to 829 

the PS method.  830 

（3） Propensity Score 831 

The propensity score method, proposed by Rosenbaum and Rubin, is 832 

a method that adjusts the effect of confounders in the situation where a 833 

large number of covariates exist. Let X  denote all observed covariates, T834 

indicates the treatment or exposure factors of interest ( 1T  indicates 835 

exposure), then the propensity score is defined as the probability that an 836 

observed subject receives a certain treatment (or exposure) under the 837 

observed covariate condition PS Pr[ 1| ]T X  . The propensity score 838 

provides a composite summary of the effects of characteristic variables and 839 

reflects the level of balance of all observed covariates between the two 840 
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groups. Rosenbaum and Rubin have demonstrated that, if the adjustment 841 

for raw covariates effectively controls the confounding effects, adjusting 842 

only the propensity scores based on these covariates is also sufficient to 843 

control for confounding effects. Propensity scores can often be estimated 844 

by regression models, such as commonly used logistic regression models 845 

with observed covariates as independent variables and treatment as 846 

dependent variables: 847 

0 1 1logit[ ( 1| )] ... p pP T X x x e         848 

Propensity score methods are particularly appropriate in cases where 849 

treatment (or exposure) factors are common but outcome events are rare, 850 

or where multiple outcomes may exist. Propensity-Score Matching, 851 

Stratification/Subclassification, Inverse Probability of Treatment 852 

Weighting (IPTW), and the method of including Propensity Score as the 853 

sole covariate in the statistical model for adjustment analysis are all 854 

commonly used.  855 

When utilizing the propensity score for causal estimation, it is 856 

important to first judge whether the covariate distribution is balanced 857 

between treatment groups for patients with a propensity score close to each 858 

other. The methods of judgment include, but are not limited to, visual 859 

inspection of the distribution of propensity scores across treatment groups 860 

after PS adjustment, or a statistical test of subject covariates across 861 

treatment groups. If the coincidence of the propensity score distribution 862 

between different groups is not high, the effect estimate obtained from the 863 

adjusted analysis using the propensity score remains at the risk of bias. 864 

Remediation schemes such as restricting the range of study subjects to 865 

overlapping regions of the distribution of propensity scores across groups 866 

may be considered in case of poor coincidence.  867 
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When possible, matching is a good application method for propensity 868 

scores. If it can be coupled with the previously mentioned methods that 869 

limit the range of the study subject, the overlap of propensity score 870 

distributions among groups may be further improved. In addition, if the 871 

summary results of the between-group equalization of all study covariates 872 

after matching are provided, such as plotting the statistics or calculating 873 

the standardized differences for each covariate before and after adjustment 874 

(after-adjustment standardized difference is usually expected to be lower 875 

than 20%), and comparing them with the results of the covariate balance 876 

of randomized clinical trials, it will be helpful to evaluate the matched 877 

effect. However, propensity score matching methods can only control the 878 

known and observed covariates. Their impact on unknown or unobserved 879 

confounders, the effect of the balancing, and the robustness of the analysis 880 

results will need to be evaluated using other approaches. Note that the 881 

standard error of the causal effect estimate based on the matched design 882 

will be different from the unmatched case.  883 

Covariates included in the propensity score model should be the 884 

confounding variables or those associated with the outcome variables. 885 

Otherwise, the variance of the estimator will increase if only the variables 886 

that are related to the exposure factor are included. Traditional regression 887 

adjustment method and propensity score matching method each has 888 

advantages and disadvantages. The former does not guarantee that the 889 

study covariates are balanced, and the latter may lead to a decrease in 890 

sample size. Therefore, further sensitivity analysis is very necessary.  891 

（4） Disease Risk Score 892 

Disease risk scores are similar to propensity scores and are a 893 

composite measure based on all covariates. Let X denote all observed 894 

covariates, T  denote the treatment or exposure factors of interest ( 1T 895 
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denote exposure), then the disease risk score is defined as the probability 896 

of an outcome event under the assumption of no treatment/exposure or 897 

specific covariate conditions DRS Pr[ 1| , 0]Y X T   .  898 

Generally speaking, the methods for estimating DRS can also fall into 899 

one of the two categories. The first type of method uses all observations of 900 

the study sample in fitting a regression model, taking treatment and 901 

covariates as independent variables, study outcomes as the dependent 902 

variable. For example, for a logistic regression model 903 

0 1 1logit[ ( 1| , )] ... p pP Y X T x x T e          ,  904 

Once fitted, the DRS values for each study subject can be calculated by 905 

substituting the covariate values into the model and setting the treatment to 906 

be the control group. With that, the treatment-to-outcome causal effect can 907 

be estimated by analyzing the data stratification by DRS. The second type 908 

of method uses only the study data of the control (non-exposed) group, 909 

historical data before the treatment factor occurs, or sample data without 910 

(or low incidence of) treatment factor to fit the DRS model. For example, 911 

for a logistic regression model as follows 912 

0 1 1logit[ ( 1| )] ... p pP Y X x x e         913 

Once fitted by using only the control group data, the DRS values for each 914 

study subject can be calculated by substituting the covariate values into the 915 

model.  916 

Different from the PS method, for studies where outcome events are 917 

common but treatment (exposure) factors are rare or there may be multiple 918 

levels of treatment, the DRS approach is a good option to balance baseline 919 

disease risk across groups. In particular, in case of multiple levels of 920 

treatment (exposure) factors, where some of them are sparse, it is often 921 

recommended that the DRS method be selected instead of the PS method.  922 
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（5） Instrumental Variables 923 

One common limitation of the previously mentioned methods 924 

(conventional regression, PS, DRS) is that only measured confounding 925 

factors can potentially be controlled. On the other hand, the causal 926 

inference based on instrumental variables does not require the specification 927 

of what confounders/covariates to be adjusted, and so the impact of 928 

unmeasured confounders can also be potentially controlled during the 929 

analysis. A variable is considered an instrumental variable if it is related to 930 

the treatment factor, and the effect on the outcome variable can only be 931 

achieved by influencing the treatment factor without being correlated with 932 

the potential confounders. After the instrumental variables are identified, 933 

even with the existence of unmeasured confounders, the treatment-to-934 

outcome causal effect can be estimated by separately estimating the effect 935 

of instrumental variables on the treatment and that on the outcome, and 936 

then contrasting the two estimated effects.  937 

The biggest challenge in using instrumental variables to estimate 938 

causal effects lies in the identification of suitable instrumental variables.  939 

First, instrumental variables cannot be associated with any observed 940 

or unobserved confounders of treatment and outcome, otherwise . Second, 941 

instrumental variables cannot have a direct effect on the outcome but only 942 

an indirect impact through the treatment-to-outcome pathway, otherwise 943 

the estimated causal effect may again be biased. Finally, instrumental 944 

variables need to be highly correlated with the treatment factor. If the 945 

correlation is too weak, in which case the variable is referred to as a weak 946 

instrumental variable, the corresponding estimator of the causal effect may 947 

perform poorly especially with small sample size, with large estimation 948 

variation and potentially enlarged bias. Variables that satisfy the above 949 

three conditions can be used as instrumental variables to estimate the 950 
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treatment-to-outcome causal effects. In practice, however, it might be 951 

difficult to find variables that meet the above conditions, and there is no 952 

particularly appropriate statistical method to evaluate whether these 953 

conditions are completely satisfied.  954 

Once instrumental variables are identified, the estimation of causal 955 

effects usually utilizes a two-stage least-squares approach: 956 

Stage 1: Fit a regression that links the treatment factors ( A ) and 957 

instrumental variables ( Z ) 0 1[ | ]E A Z Z    and obtains the predicted 958 

value of the treatment factor ˆ[ | ]E A Z ; 959 

Stage 2: Build a regression that links the outcome variables Y with the 960 

predicted value of treatment factors based on the instrumental variable, i.e.,961 

0 1
ˆ[ | ] [ | ]E Y Z E A Z   . Wit that, the regression coefficient 1̂  is an unbiased 962 

estimate of the treatment-to-outcome causal effect.  963 

The selection of instrumental variables is particularly important to the 964 

estimation of causal effects. The impact of instrumental variables to the 965 

treatment factors is expected to be homogeneous and consistent across the 966 

entire study population. Otherwise, the estimated causal effect may not 967 

represent the average causal effect in the overall population, but only the 968 

effect within a certain subpopulation in which the impact of instrumental 969 

variables is meaningful, i.e., the Local Average Treatment Effect (LATE). 970 

It should also be noted that when the treatment factor is a non-continuous 971 

variable, the estimated causal effect and the estimated error obtained by the 972 

two-stage least squares method may have potential statistical bias.  973 

3. Missing data consideration 974 

The missing data problem is often inevitable in real-world studies. 975 

Not only the outcome variables, but covariates may also be missing. This 976 

makes it difficult to assess the comparability of treatment groups, which in 977 
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turn may lead to biased estimation of treatment effect. Investigators and 978 

the Sponsor should optimize the trial design to minimize the missingness 979 

rate.  980 

Before conducting the primary analysis, an attempt should be made to 981 

determine whether the data are truly missing and, if yes, the reason for the 982 

missing. First of all, no data does not mean that the data are missing. For 983 

example, a patient did not have a certain examination, or a doctor did not 984 

perform certain examination at all. These data should not exist, nor should 985 

they be considered as missing data. This is common in real-world data. If 986 

there indeed exist missing data, an analysis of the missingness mechanism 987 

should be performed. Generally, there are three types of missing 988 

mechanism: Missing Completely At Random (MCAR), Missing At 989 

Random (MAR) and Missing Not At Random (MNAR). Missing 990 

completely at random means that the missing data are independent of the 991 

measured or unmeasured covariates and outcome variables. Let 𝑌 denote 992 

the outcome variable (𝑌𝑚𝑖𝑠 for missing data and 𝑌𝑜𝑏𝑠 for the observed 993 

data) and 𝑋 the treatment and associated baseline covariates. Let R be an 994 

indicator for missingness ( 𝑅 = 0 for missing and 𝑅 = 1  for non-995 

missing), then the missing completely at random can be expressed as:996 

Pr[ | , , ] Pr[ ]obs misR X Y Y R . Missing at random refers to the case that the 997 

missing data are independent of the potential outcome conditional on the 998 

measured covariates and outcome variable, i.e.999 

Pr[ | , , ] Pr[ | , ]obs mis obsR X Y Y R X Y . Finally, if the data are missing not at 1000 

random, the missing data may depend on the value of the missing data 1001 

themselves, and may also be related to the measured covariates and 1002 

outcome data.  1003 
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For missing data problems, selecting the appropriate methods for 1004 

imputation and analysis is an effective way to avoid bias and information 1005 

loss. If no imputation is performed and only observations with no missing 1006 

data are analyzed, then regardless of the missing mechanism, the study 1007 

efficiency will be reduced due to reduced sample size. When the 1008 

characteristics of subjects with missing data differ from those with 1009 

complete data, excluding missing data also results in biased treatment 1010 

effect estimates. Imputation methods should be established based on 1011 

appropriate assumptions on missing mechanisms and clinical problems. In 1012 

general, for missing completely at random cases, imputation with sample 1013 

means or predicted values of generalized estimating equations will suffice. 1014 

Or, the analysis can be based on the complete data only. For missing at 1015 

random cases, a statistical model can be constructed to predict the value of 1016 

[ | , 1]E Y X R   with covariates. Multiple Imputation (MI) methods are 1017 

generally recommended, such as traditional regression model methods, 1018 

Markov Chain Monte Carlo (MCMC) methods, and Fully Conditional 1019 

Specifications (FCS). In addition, for the missing at random case in a 1020 

longitudinal study, the Mixed Model for Repeated Measures (MMRM) can 1021 

be used. It should be noted that although the MMRM method is 1022 

recommended for handling missing data, it does not impute the missing 1023 

data. For the case of missing not at random, the Pattern Mixture Models 1024 

(PMM) method can be applied to construct different statistical models for 1025 

missing and non-missing data.  1026 

In addition, there is a single value imputation method, which utilizes 1027 

simple principles and is easy to implement. However, even under the 1028 

assumption of missing at random, the single value imputation cannot 1029 

guarantee a valid result, and the variability of missing data is not 1030 
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considered, either. Therefore, it is generally not recommended for the 1031 

primary analysis.  1032 

In observational studies with missing covariates, according to the 1033 

specific pattern of missingness, a number of existing statistical methods 1034 

may be considered, including complete data analysis, multiple imputation 1035 

(MI) and propensity score (PS).  1036 

The complete data analysis method performs statistical analysis by 1037 

excluding patients with missing covariates (or patients with missing 1038 

follow-up in cohort studies). This will reduce the power of the statistical 1039 

test. Note that this method can provide unbiased estimates of treatment 1040 

effect only when the missing data are not correlated with the study design 1041 

nor the treatment factors.  1042 

Multiple imputation method (MI) takes into account the uncertainty 1043 

of the missing values and impute the missing data multiple times with 1044 

possible values. As previously stated, the MI is typically performed under 1045 

the assumption of missing at random, implying that the missing data may 1046 

potentially associate with observed covariates but not with unobserved 1047 

variables. Since MI produces multiple datasets, two methods can be used 1048 

for estimating propensity scores, i.e., estimating based on each imputed 1049 

data, or estimating based on all imputed data. Rubin's method may be used 1050 

to combine multiple treatment effects that simultaneously account for 1051 

variability within and between imputed data.  1052 

It needs to be clarified that the assumption on any of the three types 1053 

of missing mechanism (MCAR, MAR, and MNAR) are generally not 1054 

verifiable and can only be justified through a correct description and 1055 

understanding of the data collection process.  1056 

It should be noted that there is no optimal way to deal with missing 1057 

data, and no method can yield the same robust and unbiased estimates as 1058 
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the one based on the complete data. The best strategy to deal with missing 1059 

data is not to plan how to analyze the data, but rather to control the chance 1060 

of missing data by optimizing the study design and implementing it with 1061 

good practice.  1062 

4. Sensitivity Analysis 1063 

The various causal inference methods mentioned previously all have 1064 

their own applicable conditions and model assumptions. For example, the 1065 

propensity score matching method does not need to satisfy the model 1066 

assumptions of the instrumental variable method, while the instrumental 1067 

variable method is able to handle situations where the propensity score 1068 

method is not applicable (eg, with the existence of unmeasured 1069 

confounders). Therefore, for the choice of statistical methods for causal 1070 

inference, sensitivity analyses can be performed to evaluate the robustness 1071 

of the analysis by using different statistical models, thereby prioritizing 1072 

statistical models with good robustness. A more comprehensive sensitivity 1073 

analysis can be found in the Guidelines for the Development of an 1074 

Observational Effectiveness Comparative Study Plan.  1075 

Finally, like other confirmatory studies, the interpretation of analysis 1076 

results for real-world studies should be as comprehensive, objective, 1077 

accurate, and adequate as possible, not only emphasize statistical 1078 

significance (such as P-values and confidence intervals), but also focus on 1079 

Clinical practical significance; not only  depend on the final conclusion, 1080 

but also on the logic and integrity of the entire evidence chain that supports 1081 

the conclusion; not only depend on the overall effect, but also on the 1082 

subgroup effect. In addition, a detailed elaboration on the control and 1083 

impact of various possible biases and confounding should be provided as 1084 

well. 1085 

  1086 
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Appendix 3: Chinese-English Vocabulary 1087 

English 中文 

21st Century Cures Act 21世纪治愈法案 

FDA Adverse Event Reporting System, FAERS FDA不良事件报告系统 

Qualification opinion of a novel data driven model of 

disease progression and trial evaluation in mild and 

moderate Alzheimer’s disease 

阿尔茨海默病疾病进展和临床试验评

估的数据驱动模型新方法的意见书 

Standard Operation Procedure, SOP 标准操作规程 

Standardized Differences 标准化差 

Patient Registry 病例登记 

Single-arm/One-arm Trial 单臂临床试验 

Electronic Medical Record, EMR 电子病历 

Electronic Health Record, EHR 电子健康档案 

Multiple Imputation, MI 多重填补 

Missing Not At Random, MNAR 非随机缺失 

Stratification/Subclassification 分层法 

Risk Factor 风险因子 

Instrumental Variable 工具变量 

Observational Study 观察性研究 

Center for Drug Evaluation, CDE 国家药监局药品审评中心 

CASSA 国家药品不良反应监测哨点联盟 

Patient Reported Outcome, PRO 患者报告结局 

Retrospective Observational Study 回顾性观察性研究 

Confounder 混杂因素 

Baseline Observation Carried Forward, BOCF 基线观测值结转 

Disease Risk Score, DRS 疾病风险评分 

Regulatory Compliance 监管合规性 

Local Average Treatment Effect, LATE 局部平均处理效应 
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Clinical Trial 临床试验 

Markov Chain Monte Carlo, MCMC 马尔科夫链蒙特卡洛模拟 

The American Recovery and Reinvestment Act 美国经济复苏刺激法案 

Federal Food, Drug, and Cosmetic Act, FD&C 美国联邦食品，药品和化妆品法 

Food and Drug Administration, FDA 美国食品药品监督管理局 

Pattern Mixture Models, PMM 模式混合模型 

Last Observation Carried Forward, LOCF 末次观测值结转 

Inverse Probability of Treatment Weighting, IPTW 逆概率加权方法 

European Medicines Agency, EMA 欧盟药物管理局 

Collider Variable 碰撞节点变量 

Prospective Observational Study 前瞻性观察性研究 

Propensity Scores, PS 倾向性评分 

Propensity-Score Matching 倾向性评分匹配法 

Hot-Deck Imputation 热卡填补 

International Council for Harmonisation of Technical 

Requirements for Pharmaceuticals for Human Use, 

ICH 

人用药品注册技术要求国际协调会 

Pharmaceutical and Medical Devices Agency, 

PMDA 

日本医药品医疗器械综合机构 

Time-varying Confounder 时变型混杂因素 

Comparative Effectiveness Research, CER 实效比较研究 

Pragmatic Clinical Trial, PCT 实用/实操临床试验 

Adaptive Licensing Pilot 适应性许可试点项目 

Data Standard 数据标准 

Randomized Controlled Trials, RCT 随机对照临床试验 

Missing At Random, MAR 随机缺失 

Conditional Mean Imputation 条件均值插补 

External Control 外部对照 
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Extrapolation 外推 

Missing Completely At Random, MCAR 完全随机缺失 

Completeness 完整性 

Health Information System, HIS 卫生信息系统 

Vascular Endothelial Growth Factor, VEGF 血管内皮生长因子 

Medical Claims Data 医保数据 

Causal Inference 因果推断 

Real World Data, RWD 真实世界数据 

Real World Research/Study, RWR/RWS 真实世界研究 

Real World Evidence, RWE 真实世界证据 

Quality Assurance 质量保证 

Quality Control 质量控制 

Intermediate Variable 中介变量 

Mixed Model for Repeated Measures, MMRM 重复测量混合效应模型 

Accuracy 准确性 

Worst Observation Carried Forward, WOCF 最差观测值结转 

 1088 


